Q1 [F2010] Phasor to Sinusoid

(a) $\vec{x}=-7+7 j$

$$
=7 \sqrt{2}<135^{\circ}
$$

Note that you should be able to get this without using the calculator.
$7 \sqrt{2}$ is from Pythagoras' theorem:

$$
7 \frac{\sqrt{7^{2}+7^{2}}}{7}=7 \sqrt{2}
$$

Also, we know that the angle in the triangle is 45° because tie two sides have tie same length.

Therefore, the phase is

$$
\Leftrightarrow x(t)=7 \sqrt{2} \cos (\underbrace{100}_{1} t+135^{\circ})
$$

ω is given.
(b)

$$
\begin{aligned}
& =7 \cos \left(t-72^{\circ}-90^{\circ}+180^{\circ}\right) \\
& =7 \cos \left(t+13^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\underbrace{7 \cos \left(t-777^{\circ}\right)-7 \sin \left(t-77^{\circ}\right)} \\
& \qquad=7 \cos \left(t-777^{\circ}+720^{\circ}\right) \\
&=7 \cos \left(t-57^{\circ}\right)
\end{aligned}
$$

Phasor form:

$$
\begin{aligned}
\vec{x} & =7 \angle 57^{\circ}+7 \angle 13^{\circ} x 3.812-5.37 j+6.821+1.56 j \\
& =10.633-4.3 j \approx 11.47 \angle-22^{\circ}
\end{aligned}
$$

$$
=10.633-4.3 j \approx 11.47 \mathrm{L-2} 2^{\circ}
$$

Conversion back to time domain:

$$
a(t)=11.47 \cos \left(t-22^{\circ}\right)
$$

Q2 [Alexander and Sadiku, 2009, Q9.24a]

Recall that $v(t) \Leftrightarrow \vec{v}$

$$
\begin{aligned}
& \frac{d}{d t} v(t) \Leftrightarrow j \omega \vec{v} \\
& \int v(t) d t \Leftrightarrow \frac{\vec{V}}{j \omega}
\end{aligned}
$$

For this question,

$$
v+\int v d t=5 \cos \left(t+45^{\circ}\right)
$$

step 1: Conversion to phasor rep.

$$
\vec{V}+\frac{\vec{v}}{j \omega}=5 \angle 45^{\circ}
$$

step 2: Solve for the variable under consideration

$$
\begin{aligned}
\vec{V}\left(1+\frac{1}{j}\right) & =5 \angle 45^{\circ} \\
\vec{V} & =\frac{5 \angle 45^{\circ}}{1-j}=\frac{5 \angle 45^{\circ}}{\sqrt{2} \angle-45^{\circ}}=\frac{5}{\sqrt{2}} \angle 90^{\circ}
\end{aligned}
$$

Step 3 : Conversion back to time domain

$$
v(t)=\frac{5}{\sqrt{2}} \cos \left(t+90^{\circ}\right) \approx 3.536 \cos \left(t+90^{\circ}\right)
$$

Q3 [Alexander and Sadiku, 2009, Q9.56]

$$
\omega=377
$$

$$
\begin{array}{r}
\vec{z}_{c}=\frac{1}{j \omega c} \approx-53.05 j \\
\vec{z}_{L}=j \omega L \approx 22.62 j \\
\vec{z}_{e q}=\left(R_{1}+\vec{z}_{C}\right)+\frac{\vec{z}_{L} R_{2}}{\stackrel{\rightharpoonup}{z}_{L}+R_{2}} \\
\approx 29.69-35.91 j \Omega \upharpoonleft
\end{array}
$$

Note that, by convention, the impedance is answered in rectangular form instead of polar form.
(In contrast, phasor is answered in polar form.)

Q4 [F2010] AC Analysis

(a)
$V_{s}(t)=7 \cos \left(200 t+30^{\circ}\right) \mathrm{V} \quad \Leftrightarrow \quad V_{s}=7 \angle 30^{\circ} \mathrm{V}$
(b) $\vec{z}_{L}=j \omega L=j \times 200 \times 5 \mathrm{~m}=j \Omega$
(C)

$$
\begin{aligned}
& \text { Nodal Analysis: } \\
& \vec{V}_{3} \\
& \Rightarrow \vec{V}_{2}=-0.138+1.068 j=1.077<97.38^{\circ} \\
& \downarrow \\
& v_{2}(t)=1.077 \cos \left(200 t+97.38^{\circ}\right) \\
& { }_{\omega} \uparrow \text { from above }
\end{aligned}
$$

(d) Method 1: Use the answer from the previous part

$$
\vec{v}_{1}=\vec{v}_{5}-\vec{v}_{2} \approx 6.201+2.43 j \approx 6.66<21.4^{\circ} \mathrm{V}
$$

Method 2: Voltage divider: $\frac{R_{1}}{R_{1}+R_{2} / / \vec{Z}_{L}} \vec{v}_{s} \approx 6.66 \mathrm{~L} 21.4^{\circ} \mathrm{V}$

$$
\begin{array}{r}
v_{1}(t)=6.66 \cos \left(200 t+21.4^{\circ}\right) V \\
\omega \text { from above }
\end{array}
$$

(e) Mesh R_{1} Analysis.

$$
\text { Mesh } x_{1}: \vec{V}_{3}-\vec{I}_{1} R_{1}-\left(\vec{I}_{1}-\vec{I}_{2}\right) R_{2}=0
$$

$u^{<6}$

$$
\begin{aligned}
& 7 \angle 30^{\circ}-G \vec{I}_{1}-4\left(\vec{I}_{1}-\vec{I}_{2}\right)=0 \\
& \text { Mesh rex }:-\left(\vec{I}_{2}-\vec{I}_{1}\right) R_{2}-\vec{I}_{2} \vec{Z}_{L}=0 \\
& \begin{array}{l}
-4\left(\vec{I}_{2}-\vec{I}_{1}\right)-j \vec{I}_{2}=0 \Rightarrow 4 \vec{I}_{1}-(4+j) \vec{I}_{2}=0 \\
\vec{I}_{1}=\left(1+\frac{j}{4}\right) \vec{I}_{2} .
\end{array} \\
& \vec{I}_{1}=1.03+0.4 j=1.11 \angle 21.4^{\circ} \quad \mathrm{A} \\
& \vec{I}_{2}=1.07+0.138 j=1.077 \angle 7.38^{\circ} \mathrm{A}
\end{aligned}
$$

(f) $\vec{I}_{L}=\vec{I}_{2}=1.077 \angle 7.38^{\circ} \mathrm{A} \Leftrightarrow i_{L}(t)=1.077 \cos \left(200 t+7.38^{\circ}\right) \mathrm{A}$ w from above
(g)

tronsformation

$$
\begin{aligned}
& =\frac{\vec{V}_{3}}{R_{1}} \times\left(R_{1} / / R_{2}\right) \\
& =\vec{V}_{s} \frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

$$
=2.425+1.4 j=2.8 \angle 30^{\circ} \mathrm{V} \quad \Rightarrow \quad \vec{V}_{A}=2.8 \mathrm{~L} 30^{\circ} \mathrm{V}
$$

(h)

$$
\left.\begin{array}{rl}
\vec{I}_{L}=\frac{\vec{V}_{A}}{\vec{Z}_{A}+\vec{Z}_{L}}=\frac{2.8 L 30^{\circ}}{2.4+j}= & \frac{2.8 L 30^{\circ}}{2.6 L 22.62^{\circ}} \quad=1.077 L 7.38^{\circ} \\
=1.068+0.138 j
\end{array}\right] \quad r_{L}(t)=1.077 \cos \left(200 t+7.38^{\circ}\right) \mathrm{A}
$$

Hence, $\stackrel{\rightharpoonup}{z}_{1}=j w L=j \times 2 \times 4=8 j$

$$
\vec{z}_{2}=\frac{1}{j \omega c}+3=\frac{1}{j \times 2 \times \frac{1}{8}}+3=\frac{4}{j}+3=3-4 j
$$

We also have $\vec{I}_{s}=5 \angle 10^{\circ}$ and $\vec{V}_{s}=10 \angle-60^{\circ}$.
Case 1: Only \vec{I}_{s} is activated Case 2: Only \vec{V}_{s} is activated

Now, because the two cases have the same frequency, $\&$ ohm's law we con combine the phasors.
We can also convert them into sinusoids and then combine.
The answer will be the sore.
caution If the frequencies are not the save, do not combine the phasors. You must convert them into sinusoids first.

$$
\begin{aligned}
& \vec{I}_{x}=-\frac{\vec{z}_{1}}{\vec{z}_{1}+\vec{z}_{2}} \vec{I}_{s}+\frac{\vec{V}_{s}}{\vec{z}_{1}+\vec{z}_{2}}=\frac{\vec{v}_{s}-\vec{z}_{1} \vec{I}_{s}}{\vec{z}_{1}+\vec{z}_{2}}=-6.26-7.68 j=9.9 L-129.17^{\circ} \\
& i_{x}(t)=9.9 \cos \left(2 t-129.17^{\circ}\right) \mathrm{A}
\end{aligned}
$$

Recall that this is the open-cirecuit voltage

$$
\vec{V}_{+h}=\vec{I}_{s} \times\left(\vec{Z}_{1} / / \vec{Z}_{2}\right)=12.32+18.7 j=22.36 L 56.6^{\circ} \mathrm{V}
$$

To find $\vec{z}_{\text {th }}$, the source is deactivated, leaving only \vec{z}_{1} and \vec{z}_{2}. The equivalent impedance at terminals $a-b$ is

$$
\vec{z}_{+h}=\vec{z}_{1} / / \vec{z}_{2}=\frac{\vec{z}_{1} \vec{z}_{2}}{\vec{z}_{1}+\vec{z}_{2}}=10+5 j=5(2+j) \Omega
$$

